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Introduction

Background

The Shannon entropy serves as a powerful tool in various combinatorial
and graph-theoretic applications.
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Introduction

Aim of the Present Work

Properties of bipartite graphs are of great interest in graph theory,
combinatorics, modern coding theory, and information theory.

This work considers new entropy-based proofs of some known, or
otherwise refined, combinatorial bounds for bipartite graphs.
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2 Lower bounds on the minimal number of colors in a constrained edge
coloring;

3 Lower bounds on the number of walks of a given length in bipartite
graphs.
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Preliminaries

Bipartite Graph

A graph is called bipartite if it has two types of vertices, and an edge
e ∈ E(G) cannot connect two vertices of the same type; we refer to the
vertices v ∈ V(G) of a bipartite graph G as left and right vertices.
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Bipartite Graph

A graph is called bipartite if it has two types of vertices, and an edge
e ∈ E(G) cannot connect two vertices of the same type; we refer to the
vertices v ∈ V(G) of a bipartite graph G as left and right vertices.

Complete Graph

A graph G is called complete if every vertex v ∈ V(G) is connected to
all the other vertices in V(G) \ {v} (and not to itself);

A bipartite graph is called complete if every vertex is connected to all
the vertices of the other type in the graph.

A complete (d− 1)-regular graph is denoted by Kd, having a number
of vertices

∣∣V(Kd)
∣∣ = d, and a number of edges

∣∣E(Kd)
∣∣ = 1

2 d(d− 1).

A complete d-regular bipartite graph is denoted by Kd,d, having a
number of vertices

∣∣V(Kd,d)
∣∣ = 2d (i.e., d vertices of each of the two

types), and a number of edges
∣∣E(Kd,d)

∣∣ = d2.
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∣∣I(G)
∣∣ denote the number of independent

sets in G.

Tensor Product

The tensor product G×H of two graphs G and H is a graph such that
the vertex set of G×H is the Cartesian product V(G)× V(H), and two
vertices (g, h), (g′, h′) ∈ V(G×H) are adjacent if and only if g is adjacent
to g′, and h is adjacent to h′ (i.e., (g, g′) ∈ E(G) and (h, h′) ∈ E(H)).
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Preliminaries

Graph K2

The graph K2 is specialized to two vertices that are connected by an edge.
We label the two vertices in K2 by 0 and 1.
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Preliminaries

Graph K2

The graph K2 is specialized to two vertices that are connected by an edge.
We label the two vertices in K2 by 0 and 1.

Bipartite Double Cover

For a graph G, the tensor product G×K2 is a bipartite graph, called the
bipartite double cover of G. The set of vertices in G×K2 is given by

V(G×K2) =
{
(v, i) : v ∈ V(G), i ∈ {0, 1}

}
,

and its set of edges is given by

E(G×K2) =
{(

(u, 0), (v, 1)
)
: (u, v) ∈ E(G)

}
.

An edge (u, v) ∈ E(G) is mapped into edges
(
(u, 0), (v, 1)

)
∈ E(G×K2)

and
(
(v, 0), (u, 1)

)
∈ E(G×K2) (G is undirected).

I. Sason ISIT 2021 July 12—20, 2021 6 / 18



Preliminaries

Shearer’s Lemma

Shearer’s lemma extends the subadditivity property of Shannon entropy.

Proposition (Shearer’s Lemma)

Let X1, . . . , Xn be discrete random variables, and let S1, . . . ,Sm ⊆ [1 : n]
include every element i ∈ [1 : n] in at least k ≥ 1 of these subsets. Then,

kH(Xn) ≤
m∑
j=1

H(XSj ). (1)

I. Sason ISIT 2021 July 12—20, 2021 7 / 18



Number of Independent Sets

Theorem (Kahn, 2001)

If G is a bipartite d-regular graph with n vertices, then∣∣I(G)
∣∣ ≤ (2d+1 − 1

) n
2d . (2)

If n is an even multiple of d, then the upper bound in (2) is tight, and it is
obtained by a disjoint union of n

2d complete d-regular bipartite graphs Kd,d.
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∣∣ ≤ (2d+1 − 1

) n
2d . (2)

If n is an even multiple of d, then the upper bound in (2) is tight, and it is
obtained by a disjoint union of n

2d complete d-regular bipartite graphs Kd,d.

A different approach, not relying on IT, leads to the generalized result.

Theorem (Sah et al., 2019)

Let G be an undirected graph without isolated vertices or multiple edges
connecting any pair of vertices. Let dv be the degree of v ∈ V(G). Then,∣∣I(G)

∣∣ ≤ ∏
(u,v)∈E(G)

(2du + 2dv − 1)
1

du dv , (3)

with equality if G is a disjoint union of complete bipartite graphs.
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Number of Independent Sets

Kahn’s IT Proof (2001)

Kahn’s proof of the bipartite case of Theorem 1 made clever use of
Shearer’s entropy inequality.

It remained unclear how to apply Shearer’s inequality in a lossless way
in the irregular case, despite some previous attempts to do so during
the last decade.
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Number of Independent Sets

Our Contributions
1 An extension of Kahn’s information-theoretic proof technique to

handle irregular bipartite graphs.
I When the bipartite graph is regular on one side, but it may be irregular

in the other, the extended entropy-based proof technique yields the
same bound that was conjectured by Kahn and proved by Sah et al.

2 Providing a variant of the proof of Zhao’s Inequality (which also
involves entropy):

Theorem (Zhao 2010)

For every finite graph G: ∣∣I(G)
∣∣2 ≤ ∣∣I(G×K2)

∣∣. (4)

As an application of (4), an extension of (2) and (3) from bipartite
graphs to general undirected graphs (without isolated vertices or
multiple edges) was shown by Galvin & Zhao (2011).
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Number of Independent Sets

A Recent Published Journal Paper

I. Sason, “A generalized information-theoretic approach for bounding the
number of independent sets in bipartite graphs,” Entropy, vol. 23, no. 3,
paper 270, pp. 1–14, March 2021.
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Edge Coloring of Bipartite Graphs

An entropy inequality proved by Kaced et al. (IEEE T-IT, 2018):

Theorem (Kaced et al. 2018)

Let A,X and Y be discrete random variables taking their values in the
sets A,X ,Y, respectively, with a joint probability mass function PA,X,Y . If
for every (x, y) ∈ X × Y, there exists at most one element a ∈ A such
that PA,X(a, x)PA,Y (a, y) > 0 then

H(A|X) + H(A|Y ) ≤ H(A). (5)

I. Sason ISIT 2021 July 12—20, 2021 12 / 18



Edge Coloring of Bipartite Graphs

The following is a modest generalization of the previous theorem by Kaced
et al. (IEEE T-IT, 2018), which suggests an extension of their result with
respect to edge coloring of bipartite graphs.

Proposition

Let A,X, Y be discrete random variables taking values in sets A,X ,Y,
respectively. Then,

H(A|X) + H(A|Y ) ≤ H(A) + logm, (6)

where
m , sup

(x,y)∈X×Y

∣∣{a ∈ A : PA,X(a, x)PA,Y (a, y) > 0
}∣∣. (7)

Proposition 13 is useful if logm < H(A); otherwise, (6) is trivial.
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Edge Coloring of Bipartite Graphs

Corollary: Rich Edge Coloring of Bipartite Graphs

Consider

a bipartite graph G with minimal left and right degrees that are equal
to dL and dR, respectively.

an edge coloring of G where
1 every two edges sharing a node have different colors;
2 for all pairs of left node vL and right node vR in V(G), there are at

most m colors touching both vL and vR.

Then, the number of colors in such an edge coloring of G is at least dL dR
m .
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Number of Walks of a Given Length in Bipartite Graphs

Number of Walks of a Given Length in Bipartite Graphs

Lower bounds on the number of walks of a given length in bipartite
graphs rely on the work by Alon, Hoory and Linial on the Moore
bound and its extension (2002).

Its later information-theoretic formulation is due to Babu and
Radhakrishnan (2014).
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Number of Walks of a Given Length in Bipartite Graphs

Lower bounds on the number of walks of a given length in bipartite
graphs rely on the work by Alon, Hoory and Linial on the Moore
bound and its extension (2002).

Its later information-theoretic formulation is due to Babu and
Radhakrishnan (2014).

Contribution

We introduce in this work refined bounds which are expressed in terms of
Shannon entropies of probability mass functions that are induced by the
degree distributions of the bipartite graph.
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Number of Walks of a Given Length in Bipartite Graphs

Lower Bounds on the Number of Walks of a Given Length

Proposition

Let G be a bipartite graph with a disjoint partition of its vertex set V(G)
to sets of left and right vertices U and V, respectively, with |U| = m and
|V| = n.
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edges may be repeated.

I. Sason ISIT 2021 July 12—20, 2021 16 / 18



Number of Walks of a Given Length in Bipartite Graphs

Lower Bounds on the Number of Walks of a Given Length

Proposition

Let G be a bipartite graph with a disjoint partition of its vertex set V(G)
to sets of left and right vertices U and V, respectively, with |U| = m and
|V| = n. Let Pk be the set of all walks of a given length k ∈ N, where
edges may be repeated. Let dr denote the degree of a vertex r ∈ V(G),
and let P and Q be PMFs defined, respectively, on U and V as follows:

P(u) ,
du

|E(G)|
, u ∈ U , (8)

Q(v) ,
dv

|E(G)|
, v ∈ V. (9)
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Number of Walks of a Given Length in Bipartite Graphs

Lower Bounds on the Number of Walks of a Given Length (cont.)

1) If k is odd, then∣∣Pk∣∣ ≥ |E(G)|k exp
(
−1

2(k − 1)[H(P ) + H(Q)]
)

(10)

≥ |E(G)|k

(mn)
k−1
2

. (11)
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Lower Bounds on the Number of Walks of a Given Length (cont.)

1) If k is odd, then∣∣Pk∣∣ ≥ |E(G)|k exp
(
−1

2(k − 1)[H(P ) + H(Q)]
)

(10)

≥ |E(G)|k

(mn)
k−1
2

. (11)

2) If k is even, then∣∣Pk∣∣ ≥ |E(G)|k exp
(
−(12k − 1)[H(P ) + H(Q)]

)
· exp(−min{H(P ),H(Q)}

)
(12)

≥ |E(G)|k

(mn)
k
2
−1 min{m,n}

. (13)
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Lower Bounds on the Number of Walks of a Given Length (cont.)

1) If k is odd, then∣∣Pk∣∣ ≥ |E(G)|k exp
(
−1

2(k − 1)[H(P ) + H(Q)]
)

(10)

≥ |E(G)|k

(mn)
k−1
2

. (11)

2) If k is even, then∣∣Pk∣∣ ≥ |E(G)|k exp
(
−(12k − 1)[H(P ) + H(Q)]

)
· exp(−min{H(P ),H(Q)}

)
(12)

≥ |E(G)|k

(mn)
k
2
−1 min{m,n}

. (13)

Equalities in (10) and (12) hold if the bipartite graph G is regular.
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Future Work

Independent Sets

It is left for future work to study if our analysis (I.S., Entropy, March ’21)
can be applied to yield bounds on the size of a random independent set.
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It is left for future work to study if our analysis (I.S., Entropy, March ’21)
can be applied to yield bounds on the size of a random independent set.

Number of Trails and Paths of a Given Length (cont.)

In a paper by Alon, Hoory and Linial (2002), a certain non-returning
walk was considered for graphs of minimum degree at least 2.

It is left for a future study to examine an adaptation of our analysis to
yield similar bounds on the number of

I k-length trails (i.e., walks with no repeated edges);
I k-length paths (i.e., walks with no repeated edges & vertices).
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It is left for future work to study if our analysis (I.S., Entropy, March ’21)
can be applied to yield bounds on the size of a random independent set.

Number of Trails and Paths of a Given Length (cont.)

In a paper by Alon, Hoory and Linial (2002), a certain non-returning
walk was considered for graphs of minimum degree at least 2.

It is left for a future study to examine an adaptation of our analysis to
yield similar bounds on the number of

I k-length trails (i.e., walks with no repeated edges);
I k-length paths (i.e., walks with no repeated edges & vertices).

Thanks for your attention.
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